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Abstract:
There is considerable interest in the possibility of producing Sm-Co-based nanocomposite magnets by
rapid solidification and other far-from-equilibrium processing methods. Thermodynamic and kinetic
models are quite valuable in understanding and optimizing such methods.  This paper describes a
method of estimation, utilizing tight-binding-based bond-order interatomic interaction potentials, of
the thermodynamic properties of point defects (such as vacancies, interstitials, antisite defects, and
solute additions in the SmCo5+x and Sm2Co17-y phases and related rare-earth-transition metal
compounds.  Illustrative calculations for point defects in SmCo5 will be presented.  The results
suggest a unified model of the thermodynamic properties of the SmCo5+x - Sm2Co17-y region of the
phase diagram, based on the 1-5 structure and the replacement of Sm by interacting dumb-bell
interstitials to form the 2-17 structure; the model is similar in nature to theories of the thermodynamics
of metal hydrides.

I.  Introduction:
There has been much recent interest in the possibility of producing exchange-spring nanocomposites
based on rare-earth/transition-metal compounds, including Sm-Co-based systems (e.g., references [1]
and [2]).  Thermodynamic and kinetic models are often very valuable in understanding and optimizing
such methods.  Such models must be simple enough to use in complex situations, often precluding
the use of first-principles calculations, yet they should contain the essential physics of the problem.
Sometimes even very primitive models such as pair-potential-based regular solution models can be of
great value [3].  A great improvement over the use of pair-potentials in the realism of the description
of metallic bonding in recent years has been achieved by the use of many-atom potentials such as
embedded-atom models and bond-order potentials [4].  Cottrell has shown that the use of the latter
can be of great value in understanding the systematics of the properties of transition metal carbides [5]
and intermetallic compounds [6].

In this paper we will present a bond-order-potential model for rare-earth/transition metal compounds
and illustrate its use by calculations of the energetics of point defects and non-stoichiometry in
SmCo5.  The results suggest s simple regular-solution model for the SmCo5-Sm2Co17 region of the
phase diagram of the Sm-Co system.

II.  Bond-order-potential model:
We will use the simplest version of many-atom bond-order-potentials [4] as implemented by Cottrell
[5,6].  This is essentially a modern and explicit version of Linius Pauling’s resonating valence-bond
theory of metallic bonding [7].  In this approach the bonding energy Ubond  of a collection of atoms is
described as the sum of bond energies h(R), where R  is the bond length.  The effectiveness of the
bond depends upon its bond order θ, which, in turn, depends upon the competition of nearby bonds
for the available valence electrons.  In the Pettifor approach this is described by:

Ubond =
1

2
h
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where i  and j  are indices labeling the various atoms in the system.  Pettifor’s relation for the bond
orders is given by

θ ij = 4χh( Rij )F(ρ ij ) (2)

where χ  is a function describing the filling of the available electron bands and:

ρij = 1
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(ρ i + ρ j ) (3)
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In Cottrell’s implementation of his scheme, the bond-filling factors 4 χ  is taken to be constant and set
equal to unity; the bond-length dependence of the bond strength h  is approximated by:

hij ( Rij )e = Be
−qij Rij (6)

In addition to bonding terms, as described above, Cottrell includes a interatomic repulsion energy Urep

described as a sum of pairwise interactions:

Urep = 1
2 Aij
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∑

i
∑ e

− pijRij (7)

Further simplifications are achieved by restricting interactions to nearest-neighbor bonds and
repulsions and by keeping a constant ratio of the repulsion and bonding exponents p/q, chosen to be
four for transition metals (and rare-earths, which we treat here is equivalent in nature to early
transition metals).

We have used the Cottrell-Pettifor scheme to fit data [8] for the atomic volume, cohesive energy, and
bulk modules of the transition-metal and rare-earth elements to obtain the parameters A, b, and p in
Eqs. (6) and (7).  Values for several elements of interest are listed in Table 1.

In order to describe the properties of intermetallic compounds, such as SmCo5, it is necessary to
describe the strength of bonds (and repulsions) between atoms of different species.  For this purpose,
we assume a relation, similar to the Wolfsberg-Helmholtz approximation [9] of quantum chemistry,
between the bond strengths between unlike atoms, IJ, and those of like atoms of the species involved,
IJ and JJ, as:

AIJ = 1
2 Kr(AII + AJJ ) (8)

BIJ = 1
2 K b (BII + BJJ ) (9)

pIJ = 1
2( pII + pJJ )           (10)



The unknown constants, Kr  and Kb , based on semiempirical quantum-chemical experience [9], are
expected to be somewhere between one and two.  We find their value by requiring agreement with the

Element p, nm-1 12A, 104 eV 12B, eV

Fe 39.69 7.14 500
Co 41.40 9.20 54.2
Ni 39.60 5.66 482
Ti 31.78 3.57 459
Zr 26.97 2.35 503
Hf 29.35 4.55 602
Pr 21.92 0.737 253
Nd 23.87 1.30 266
Sm 27.83 3.23 244
Dy 27.40 3.15 302

Table 1:  Parameters used in Eqs. (6) and (7) for several transition-metal and rare-earth elements.
Note:  The exponent ratio p/q is assumed to be four for all elements.

experimental heat of formation and volume per atom of the compound of interest.  Using the Miedema
approximation [10] to estimate the heat of formation and the experimental value of the specific volume
[11], we find Kr  and Kb  to be 1.50 and 1.37, respectively, for SmCo5.

III.  Estimates of the energetics of point defects and non-stoichiometry in SmCo5:
The bond-order potential model described above can be used quite easily to estimate the energetics of
defect formation in SmCo5.  Calculations based on a rigid lattice are easily made.  While, in such an
approximation, atomic relaxation is neglected, the bond-order-potential method automatically includes
electronic relaxation, i.e. “back bonding,” by means of the re-computation of the bond orders after the
defect is created.  This electronic relaxation alone results in good agreement with experimental data for
vacancy formation in elemental transition metals.  Similar good results were obtained by Cottrell for
the energetics of non-stoichiometry by means of the formation of vacancies in transition-metal
carbides [5] and for vacancies and antisite defects in intermetallic compounds of the Ni-Al system [6].
Atomic relaxation effects can be easily estimated using methods of continuum [12] or discrete [13]
elasticity theory.  In the following estimates, atomic relaxation is neglected.  The consequences of this
are discussed below.

Consider first the formation of point defects in stoichiometric SmCo5.  If a Co atom is removed from
a site in a plane containing Sm atoms (Co1 site) in the interior of the crystal and placed in a similar site
at a jog on the surface, the computed energy of bond breaking is 4.15 eV; however subsequent back-
bonding (i.e., electronic relaxation) reduces the energy by 3.09 eV for a net energy required for Co1

vacancy formation of 1.06 eV.  Likewise the energy for Co2 and Sm vacancy formation are 1.71 eV
and 1.78 eV respectively.  In order to form vacancies without changing the composition of the crystal,
including the surface, it is required that vacancies be formed in numbers corresponding to the ratio of
sites in the crystals (2Co1/3Co2/1Sm); thus the weighted average energy per vacancy for the required
“Schotky sextet” of vacancies is 1.5 eV.  The ratio of this to the cohesive energy per atom of SmCo5,
4.38 eV, is 0.34.  This is somewhat less than the experimental values [14] for bcc transition metals,
such as W and Mo, for which the ratio is about 0.4 - 0.5, and is similar to experimental values [14]
for fcc transition and noble metals, such as Pt, Cu, Ag, and Au, for which the ratio is about 0.25 -
0.35.  Because of the differences in energy required to remove atoms from the various sites to the
surface [1.06 eV (Co1), 1.71 eV (Co2), 1.78 eV (Sm)], at high temperatures of processing there will



be a tendency for Co to segregate to surfaces, and probably grain boundaries as well, with
implications for coercivity if such segregation is retained at lower temperatures.

Next, let us consider the energy required to go off the stoichiometric composition SmCo5 by the
addition of Co, i.e. SmCo5+x, by means of the creation of point defects.  There are three simple
possibilities:  1) formation of “constitutional” vacancies on the Sm sites; 2) formation of simple
antisite defects on Sm sites, i.e. replacing a Sm atom by a single Co atom; and 3) replacing a Sm atom
by a pair of Co atoms in a “dumb-bell” configuration aligned along the c axis.  We can very easily use
the bond-order potentials to compute the energy required to remove Sm atoms, exchange one type of
atom for another, and insert an extra Co atom, if we neglect the relaxation of the atomic coordinates.
(Recall that the bond-order-potential method automatically includes electronic relaxation.)  The neglect
of atomic relaxation will be more serious in the case of dumb-bell interstitials and we will discuss this
further below.

In the case of constitutional Sm vacancies, we consider the following process.  Start with N unit cells
of stoichiometric SmCo5 and remove Nx/5 Sm atoms to form vacancies.  Take Nx atoms of metallic
Co and vaporize them, then combine them with the removed Sm atoms for Nx/5 unit cells of SmCo5,
and add this to the compound with the vacancies.  The result is N unit cells of SmCo5+x; for each of
the Nx Co atoms added the energy cost of this process is:

∆EV =
1

5
∆E(to remove Sm from Sm site)+

6

5
USmCo5

− UCo                          (11)

where U is the cohesive energy     per       atom      of the appropriate crystal.  The values of the three terms on
the rhs are, respectively:  1/5 (7.29), -(6/5) 4.38, and 4.41 eV.  The net energy cost is 1.22 eV per
added Co atom, by means of the formation of constitutional vacancies.

By use of the same kind of reasoning, the energy cost per added Co atom by means of the formation
of simple antisite defects, i.e. single Co atoms on Sm sites, is:

∆EAS =
1

6
[∆E(to remove Sm atom from Sm site) + ∆E(place Co atom on a vacant Sm site)]

                + USmCo5 − UCo

 

     (12)

The values of the three terms are found to be, respectively, (1/6) 3.40, - 4.38, and 4.41 eV, for a net
energy per added Co atom of 0.60 eV.

Likewise the energy required to form an antisite defect consisting of a “dumb-bell” of two Co atoms
on a Sm site in an unrelaxed lattice is:

∆EDB = 1

7
[∆E(to remove a Sm atom from a Sm site)

                 + ∆E(to place two Co atoms on a vacant Sm Site)]

                 +
6

7
USmCo5

− UCo

          (13)

The values of the three terms are found to be, respectively, -(1/7) 1.84, -(6/7) 4.38, and 4.41, for a
net energy cost per added Co atom of 0.39 eV.  Several comments are in order.  In making this
calculation it was assumed that the Co-Co separation in the dumb-bell is the same as that in Sm2Co17.



[15]  The fact that the energy to replace a Sm atom by a pair of Co atoms is negative arises from the
much larger size of the Sm atom and the larger strength of Co-Co bonds compared to Sm-Co bonds.
The energy cost is also lowered because of the strong bond between the pair of Co atoms in the
dumb-bell because of the attraction of bonding electrons away from the long bonds to the neighbors to
the short bond of the dumb-bell.

The neglect of lattice relaxation is much more serious for the dumb-bell interstitial energy than for the
simple antisite defect or the constitutional vacancy.  Hence the relative value of the energy cost per
added Co atom should be even more favorable for the dumb-bell mechanism than for the simple-
antisite-defect and constitutional-vacancy mechanisms than these rigid-lattice estimates (0.39 eV,
0.60, and 1.22 eV, respectively) indicate.  This is consistent with the experimental observation that
the various crystallographic structures observed for Sm2Co17 [15] can be constructed from the SmCo5

structure by the substitution of Co-Co dumb-bells in appropriate Sm sites.  An important consequence
of the lattice distortions caused by the dumb-bell interstitials is that the elastic interactions between
them can give rise to a phase separation of Sm2Co17 from sufficiently off-stoichiometric compositions
of SmCo5+x, as is the case in metal-hydrogen systems.

IV.  SmCo5+x - Sm2Co17-y phase separation by means of the elastic interaction
between Co-Co dumb-bell interstitials
Because of the lattice distortions resulting from Co-Co dumb-bell interstitials on Sm sites of the
SmCo5 lattice these interstitials interact in three ways:  1) a short-range repulsion restricts the total
interstitial content; 2) a long-range attractive elastic interaction which promotes phase separation; and
3) angular elastic-dipole interactions which give rise to crystallographic ordering of the dumb-bells.
In this sense, this system resembles metal hydrides, for which an extensive theory exists [16].  In this
discussion we will focus on the first two types of interactions.  For the first type we will simply use a
hard-core repulsion which restricts to total dumb-bell interstitial content to 1/3 of number of Sm sites.
(This maximum results in stoichiometric SmCo17.)  For the second type we use the macroscopic,
long-range image interaction between elastic dipoles [12,13,16], and we thereby estimate the strength
of the interaction from the difference in lattice parameters of SmCo5 and Sm2Co17.

We approximate the elastic response of the SmCo5 as that of a finite, isotropic elastic continuum.  In
this approximation, the long-range elastic interaction [12,13,16] gives rise to an interaction energy,
per Co site, given by:

Eint = −
1

2
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 
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where c is the number of Co-Co dumb-bells per Sm site; Ω is the volume per Sm site ; dΩ / dx  is
obtained from the difference in specific volume between SmCo5 and Sm2Co17 [15,11], B is the bulk
modulus, and µ is an average elastic shear modulus for SmCo5 [17].  This yields an interaction
energy of

Eint = − 1
2aintc

2           (15)

where aint ≅ 0.23 eV.  

An appropriate estimate of the effect of this interaction between Co-Co dumb-bells can be made by
analogy to metal-hydride systems.  In this case statistical thermodynamic models have been made
using long-range elastic image interaction between interstitial hydrogen atoms, together with hard-core
interactions at short range, for transition-metal compounds.  Tessier et al. [18] have recently analyzed



phase separation in FeTi hydrides with such a model; for this system the found a value for aint  of
about 0.16 eV and used a relationship of Griessen [19] (Tc=aint /4 k) to calculate the maximum
temperature of phase separation to be 455 k.  Using this result for our value of aint , 0.23 eV yields a
maximum temperature of phase separation of 670 K, which is considerably less than the value of
1600 K suggested by a visual estimate from the Sm-Co phase diagram [20].  Clearly, a better estimate
of the dumb-bell interstitial interaction energy and/or a more careful examination of the statistical
thermodynamics is needed.  A brief sketch of the latter is found below.

V.  A statistical thermodynamic model for SmCo5+x - Sm2Co17-y
We will briefly sketch out a statistical thermodynamic model for the free energy G of this system
which, for example, could be used to the estimates of the dumb-bell formation energy ∆EDB  and
interaction energy aint  discussed above.  We use the hard-core repulsion between dumb-bells to limit
the degree to which Sm atoms can be replaced, in accord with the phase diagram, to a value of 1/3.
Subject to this restriction we take the distribution of dumb-bells over the available Ns Sm sites to be
random.  [We have approximated the Sm2Co17-y phase as being in the disordered Cu7Tb structure
rather than the actual ordered Th2Zn17 structure [15].]  With these approximations, the free energy of
the system can be obtained by the methods discussed in reference [21], and it is given by:

  
G = 7Ns∆EDBc − 1

2 Nsaintc
2 − NskT αlnα − (α − c)ln(α − c) − clnc[ ]           (16)

where α=1/3. c  is the fraction of the Ns Sm sites occupied by Co-Co dumb-bells.  The free energy in
Eq. (16) is that of No formula units of SmCo5+x relative to that of No formula units of SmCo5 plus
Nox units of metallic Co.  The fractional concentration c  is given by x/(7+x).

While the free energy of the system is derived most simply in the form of Eq. (16), in order to
correctly explore the thermodynamics of phase separation it is necessary to write the free energy in
terms of the composition c  and the total number of atoms Nt rather than the number of Sm sites Ns,
since the latter varies as the stoichiometry of SmCo5+x varies with x.  The thermodynamics of phase
relations are most easily discussed in terms of the free energy per atom as the composition is varied
[3].  For our system, CoSm5+x for 0 ≤ x ≤ 3.5, it is easily shown that the relationships among the
number of formula units No, the total number of atoms Nt, and the number of Sm sites Ns are given
by:

Ns = No 1 + x
7( )[ ] =

No
(1− c)

          (17)

Nt = No(6 + x) = No
(6 + c)

(1− c)
          (18)

Ns =
Nt(7 + x)

7(6 + x)
=

Nt
(6 + c)

          (19)

Thus, the required free energy per atom (in terms of the concentration of dumb-bells) is given by:

  

G

Nt
=

1

6 + c
7∆EDBc − 1

2 aintc
2 + kT clnc + (α − c)ln(α − c) − αlnα[ ]{ }           (20)

An analysis of the experimental phase diagram in the SmCo5+x - Sm2Co17-y region. using Eq. (20),
should provide a means of testing and improving our estimates of ∆EDB  and aint , which can then be
used, for example, to calculate spinodal lines, thermodynamic factors for interdiffusion kinetics, and



similar quantities for use in understanding processing and the evolution of microstructures in this
system.

VI.  Conclusions
The elementary estimates of defect energetics and free energies discussed above show how bond-
order potentials and elasticity theory (either continuum [12] or descrete-lattice [13] versions), together
with empirical corrections from the phase diagram and measured lattice parameter variations, can be
used to generate thermodynamic (including metastability) and kinetic models for the Sm-Co system
and related materials.  Such models should be of help in understanding and optimizing processing
methods for rare-earth/transition-metal compounds for magnetic applications.
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